The character positions of the CAPTCHA in StrongWisdom Education System are relatively fixed and can be segmented effectively. By accurately identifying the segmentation positions and dividing it into four parts, it can be matched against a self-built library, achieving a recognition rate close to 100%. See the Java, PHP, Python, JavaScript versions here.
First, use code to segment the CAPTCHA and select the well-segmented CAPTCHAs to create a comparison library. Since the matchTemplate
function requires the image to be matched to be smaller than the library image, it is necessary to enlarge the boundaries of the library image.
Use the TestImgCut.py
to segment the image and select the appropriate segmentation position.
#!/usr/bin/python
# -*- coding: utf-8 -*-
from fnmatch import fnmatch
from queue import Queue
import matplotlib.pyplot as plt
import cv2
import time
import os
from Convert import Convert
import requests
def _get_static_binary_image(img, threshold = 140):
'''
Manually binarize
'''
img = Image.open(img)
img = img.convert('L')
pixdata = img.load()
w, h = img.size
for y in range(h):
for x in range(w):
if pixdata[x, y] < threshold:
pixdata[x, y] = 0
else:
pixdata[x, y] = 255
return img
def cfs(im,x_fd,y_fd):
'''Use queues and sets to record the traversed pixel coordinates to solve the problem of excessively deep access during CFS instead of simple recursion.
'''
# print('**********')
xaxis=[]
yaxis=[]
visited =set()
q = Queue()
q.put((x_fd, y_fd))
visited.add((x_fd, y_fd))
offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]#Four-neighborhood
while not q.empty():
x,y=q.get()
for xoffset,yoffset in offsets:
x_neighbor,y_neighbor = x+xoffset,y+yoffset
if (x_neighbor,y_neighbor) in (visited):
continue # Already visited
visited.add((x_neighbor, y_neighbor))
try:
if im[x_neighbor, y_neighbor] == 0:
xaxis.append(x_neighbor)
yaxis.append(y_neighbor)
q.put((x_neighbor,y_neighbor))
except IndexError:
pass
# print(xaxis)
if (len(xaxis) == 0 | len(yaxis) == 0):
xmax = x_fd + 1
xmin = x_fd
ymax = y_fd + 1
ymin = y_fd
else:
xmax = max(xaxis)
xmin = min(xaxis)
ymax = max(yaxis)
ymin = min(yaxis)
# ymin, ymax = sort(yaxis)
return ymax, ymin, xmax, xmin
def detectFgPix(im, xmax):
'''Search for the starting point of the block
'''
h, w = im.shape[:2]
for y_fd in range(xmax + 1, w):
for x_fd in range(h):
if im[x_fd, y_fd] == 0:
return x_fd, y_fd
def CFS(im):
'''Cutting character positions
'''
zoneL = [] # List of lengths L for each block
zoneWB = [] # X-axis [start, end] list for each block
zoneHB = [] # Y-axis [start, end] list for each block
xmax = 0 # The previous block ends with the x-coordinate of the black point, which is initialized here
for i in range(10):
try:
x_fd, y_fd = detectFgPix(im, xmax)
# print(y_fd,x_fd)
xmax, xmin, ymax, ymin = cfs(im, x_fd, y_fd)
L = xmax - xmin
H = ymax - ymin
zoneL.append(L)
zoneWB.append([xmin, xmax])
zoneHB.append([ymin, ymax])
except TypeError:
return zoneL, zoneWB, zoneHB
return zoneL, zoneWB, zoneHB
def cutting_img(im, im_position, xoffset=1, yoffset=1):
# Recognized number of characters
im_number = len(im_position[1])
if im_number >= 4:
im_number = 4
imgArr = []
# Cut characters
for i in range(im_number):
im_start_X = im_position[1][i][0] - xoffset
im_end_X = im_position[1][i][1] + xoffset
im_start_Y = im_position[2][i][0] - yoffset
im_end_Y = im_position[2][i][1] + yoffset
cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
imgArr.append(cropped)
cv2.imwrite(str(i) + "v.jpg", cropped) # View cutting effect
return im_number, imgArr
def main():
cvt = Convert()
req = requests.get("http://XXXXXXXXXXXXXXXXXXX/verifycode.servlet")
img = cvt.run(req.content)
cv2.imwrite("v.jpg", img)
# Cut positions
im_position = CFS(img) # Auto
print(im_position)
maxL = max(im_position[0])
minL = min(im_position[0])
# If there are connected characters, and if the length of a character is too long, it is considered a connected character and will be split from the middle
if maxL > minL + minL * 0.7:
maxL_index = im_position[0].index(maxL)
minL_index = im_position[0].index(minL)
# Set the width of the character
im_position[0][maxL_index] = maxL // 2
im_position[0].insert(maxL_index + 1, maxL // 2)
# Set the X-axis position of the character [start, end]
im_position[1][maxL_index][1] = im_position[1][maxL_index][0] + maxL // 2
im_position[1].insert(maxL_index + 1, [im_position[1][maxL_index][1] + 1, im_position[1][maxL_index][1] + 1 + maxL // 2])
# Set the Y-axis position of the character [start, end]
im_position[2].insert(maxL_index + 1, im_position[2][maxL_index])
# To cut the character, the parameters need to be configured for a good cut, usually 1 or 2 will suffice
cutting_img_num, imgArr = cutting_img(img, im_position, 1, 1)
# # Directly use the library to read the image and recognize the captcha
# result = ""
# for i in range(cutting_img_num):
# try:
# template = imgArr[i]
# tempResult = ""
# matchingDegree = 0.0
# filedirWarehouse = '../../Warehouse/StrIntell/'
# for fileImg in os.listdir(filedirWarehouse):
# if fnmatch(fileImg, '*.jpg'):
# img = cv2.imread(filedirWarehouse + fileImg, 0)
# res = cv2.matchTemplate(img, template, 3) # Match the template with the original image
# min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# if max_val > matchingDegree:
# tempResult = fileImg.split('.')[0]
# matchingDegree = max_val
# result += tempResult
# matchingDegree = 0.0
# except Exception as err:
# print("ERROR " + str(err))
# pass
# print('切图:%s' % cutting_img_num)
# print('识别为:%s' % result)
if __name__ == '__main__':
main()
resize.py
Change the image boundaries
import cv2
from fnmatch import fnmatch
import os
def main():
filedir = './StrIntell'
for file in os.listdir(filedir):
if fnmatch(file, '*.jpg'):
fileLoc = filedir + "/" + file
img = cv2.imread(fileLoc)
# img = cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_CONSTANT, value=[255,255,255]) # Expand
# img = img[0:25, 0:25] # Crop height * width
print(img.shape)
cv2.imwrite(fileLoc, img)
if __name__ == '__main__':
main()
Choose a suitable library image and resize it
Use TestImgCut.py
to directly read and identify the captcha from the library
Select the appropriate cropping positions based on effectiveness and save them
When you think the library files and cropping positions are suitable, convert the images to a list
and save them in a variable
The main purpose of saving in a variable is to directly read it into memory, avoiding frequent disk reads that waste time.
binary.py
Convert characters to variables
import cv2
import os
from fnmatch import fnmatch
import numpy as np
np.set_printoptions(threshold=np.inf) # Do not omit output
if __name__ == '__main__':
binary = ""
for fileImg in os.listdir("StrIntell/"):
if fnmatch(fileImg, '*.jpg'):
img = cv2.imread("StrIntell/"+fileImg,0)
binary = binary + "'" +fileImg.split(".")[0] + "'" + ":" + str(img.tolist()) + ","
# cv2.imwrite("test.jpg", np.array(img.tolist()))
binary = "charMap = {" + binary + "}"
with open("CharMap.py",'w+') as f:
f.write(binary)
CharMap.py
Character variables
charMap = {'1':[[255, 255, 254, 254, 255, 251, 254, 255, 254, 253, 254, 255, 255], [252, 254, 251, 255, 255, 254, 255, 255, 254, 253, 254, 255, 255], [255, 249, 255, 252, 248, 255, 250, 255, 252, 252, 253, 254, 254], [253, 255, 250, 255, 249, 255, 1, 0, 251, 252, 253, 253, 254], [253, 255, 250, 253, 5, 1, 3, 0, 253, 254, 254, 254, 253], [254, 251, 255, 253, 0, 0, 5, 2, 253, 255, 255, 254, 253], [254, 254, 250, 255, 252, 254, 2, 0, 251, 253, 255, 255, 254], [254, 250, 255, 255, 255, 254, 3, 5, 250, 252, 254, 254, 254], [255, 255, 248, 255, 249, 254, 2, 0, 255, 255, 255, 253, 255], [252, 255, 251, 255, 255, 253, 1, 0, 254, 255, 253, 254, 255], [255, 251, 254, 255, 250, 254, 2, 0, 255, 255, 252, 253, 251], [253, 255, 252, 253, 248, 253, 0, 6, 255, 251, 254, 252, 251], [255, 250, 255, 249, 255, 255, 0, 2, 250, 255, 253, 255, 254], [254, 255, 253, 255, 0, 0, 2, 1, 1, 2, 254, 251, 255], [254, 254, 247, 255, 0, 3, 3, 0, 3, 3, 254, 251, 254], [252, 253, 255, 252, 255, 255, 251, 255, 254, 254, 253, 255, 252], [255, 255, 255, 249, 255, 253, 255, 252, 255, 255, 252, 251, 254]],'2':[[249, 255, 251, 254, 255, 253, 253, 253, 255, 255, 252, 251, 255], [255, 253, 255, 251, 249, 255, 254, 255, 252, 253, 255, 255, 253], [253, 254, 252, 255, 254, 253, 255, 253, 253, 255, 250, 252, 255], [254, 255, 252, 2, 0, 3, 1, 0, 255, 255, 253, 254, 255], [254, 252, 5, 0, 2, 0, 3, 1, 3, 249, 253, 255, 254], [254, 255, 254, 249, 251, 251, 253, 253, 4, 1, 254, 255, 251], [255, 254, 251, 255, 251, 255, 255, 250, 0, 4, 253, 251, 254], [255, 250, 251, 252, 255, 246, 253, 254, 9, 2, 252, 255, 251], [248, 255, 253, 252, 255, 255, 255, 5, 0, 254, 253, 254, 255], [253, 255, 251, 255, 252, 0, 0, 0, 255, 251, 255, 251, 255], [255, 250, 252, 255, 1, 2, 255, 253, 250, 255, 252, 255, 250], [254, 253, 255, 0, 6, 255, 247, 255, 252, 255, 252, 251, 255], [254, 255, 2, 2, 0, 250, 255, 253, 251, 254, 253, 252, 255], [254, 254, 3, 2, 1, 1, 5, 1, 3, 1, 255, 253, 252], [252, 251, 1, 3, 0, 3, 0, 4, 7, 1, 252, 254, 255], [254, 255, 255, 255, 255, 255, 255, 253, 252, 255, 254, 255, 253], [252, 255, 255, 255, 253, 255, 251, 253, 255, 255, 251, 255, 254]],'3':[[255, 253, 253, 255, 255, 253, 251, 255, 254, 253, 255, 255, 250], [255, 253, 251, 255, 255, 254, 253, 249, 255, 254, 253, 255, 254], [253, 251, 255, 252, 252, 255, 254, 255, 255, 254, 253, 252, 253], [255, 253, 249, 253, 255, 0, 4, 0, 0, 0, 255, 255, 252], [254, 255, 255, 250, 3, 3, 0, 6, 4, 0, 0, 255, 254], [254, 255, 255, 253, 252, 255, 252, 252, 253, 3, 0, 254, 255], [255, 250, 255, 255, 252, 253, 255, 253, 253, 254, 0, 248, 255], [255, 255, 254, 254, 253, 253, 253, 252, 255, 0, 2, 253, 253], [254, 255, 253, 255, 255, 251, 0, 1, 0, 3, 253, 255, 253], [254, 250, 255, 255, 255, 255, 0, 5, 4, 0, 0, 252, 254], [255, 255, 254, 252, 255, 254, 254, 255, 255, 0, 3, 254, 253], [254, 250, 255, 254, 254, 254, 253, 250, 251, 255, 0, 255, 255], [255, 255, 253, 255, 255, 252, 253, 255, 255, 4, 3, 251, 251], [255, 255, 252, 254, 254, 4, 0, 1, 4, 0, 2, 255, 254], [254, 254, 255, 252, 254, 0, 0, 2, 5, 0, 255, 250, 254], [255, 255, 254, 254, 255, 254, 255, 254, 255, 253, 253, 252, 251], [255, 255, 255, 255, 255, 255, 254, 254, 252, 255, 253, 255, 254]],'b':[[254, 255, 255, 255, 254, 255, 253, 255, 255, 254, 255, 255, 253], [255, 252, 251, 253, 252, 255, 254, 252, 255, 255, 255, 252, 255], [253, 255, 255, 252, 255, 255, 252, 255, 255, 250, 255, 255, 255], [255, 253, 0, 1, 252, 252, 255, 252, 253, 255, 253, 254, 255], [255, 251, 4, 0, 255, 252, 255, 254, 255, 253, 255, 253, 251], [253, 255, 0, 5, 254, 254, 255, 253, 249, 250, 255, 255, 253], [253, 255, 4, 1, 3, 0, 1, 0, 9, 254, 250, 249, 255], [254, 253, 2, 1, 0, 3, 0, 5, 0, 1, 255, 249, 253], [253, 251, 4, 0, 4, 255, 255, 252, 1, 0, 3, 255, 252], [255, 255, 0, 4, 250, 249, 255, 255, 255, 0, 0, 254, 254], [252, 254, 0, 5, 254, 255, 252, 252, 255, 5, 0, 255, 255], [254, 253, 4, 0, 255, 251, 250, 255, 254, 1, 2, 255, 254], [254, 255, 0, 0, 2, 255, 254, 252, 3, 0, 1, 253, 255], [248, 253, 1, 4, 2, 0, 2, 4, 1, 0, 255, 253, 255], [255, 255, 4, 1, 253, 2, 4, 0, 13, 249, 254, 255, 252], [249, 255, 254, 251, 255, 253, 254, 253, 254, 255, 253, 255, 251], [255, 254, 255, 251, 255, 255, 253, 252, 252, 255, 255, 255, 255]],'c':[[254, 255, 255, 255, 255, 254, 254, 255, 255, 255, 254, 255, 253], [255, 255, 251, 254, 255, 255, 255, 255, 254, 255, 254, 254, 254], [255, 255, 255, 252, 255, 251, 254, 254, 255, 253, 255, 254, 255], [254, 251, 255, 255, 254, 255, 251, 254, 253, 255, 254, 254, 255], [255, 255, 252, 254, 255, 250, 255, 253, 255, 248, 255, 255, 255], [255, 255, 255, 252, 251, 255, 255, 251, 255, 254, 255, 255, 250], [249, 255, 255, 252, 7, 0, 0, 2, 0, 255, 251, 255, 255], [255, 252, 253, 7, 0, 3, 0, 0, 0, 255, 255, 254, 254], [254, 255, 1, 5, 2, 254, 254, 254, 255, 249, 255, 255, 254], [252, 255, 0, 6, 247, 255, 252, 255, 253, 254, 254, 254, 255], [255, 250, 0, 0, 255, 255, 252, 255, 254, 255, 251, 253, 255], [254, 252, 4, 1, 252, 255, 252, 250, 251, 254, 255, 255, 255], [250, 255, 0, 4, 0, 250, 254, 255, 255, 250, 255, 254, 249], [255, 255, 254, 0, 1, 0, 2, 0, 0, 252, 254, 255, 255], [254, 255, 252, 255, 3, 0, 0, 3, 2, 255, 252, 255, 255], [248, 255, 252, 253, 254, 255, 255, 255, 253, 255, 255, 255, 250], [255, 255, 254, 251, 255, 253, 252, 254, 255, 253, 255, 255, 254]],'m':[[254, 253, 255, 252, 255, 252, 255, 255, 255, 255, 253, 255, 255], [255, 255, 252, 255, 252, 255, 253, 254, 252, 255, 255, 252, 255], [255, 255, 255, 253, 255, 254, 254, 255, 253, 255, 254, 254, 255], [254, 253, 254, 255, 255, 254, 251, 253, 255, 255, 253, 255, 253], [254, 255, 255, 251, 254, 254, 253, 253, 253, 252, 254, 253, 255], [255, 250, 255, 255, 255, 255, 252, 255, 254, 254, 255, 255, 255], [255, 255, 0, 8, 253, 0, 7, 0, 5, 251, 250, 255, 254], [254, 255, 1, 0, 2, 9, 1, 1, 1, 4, 1, 255, 255], [255, 253, 6, 0, 1, 254, 255, 255, 3, 0, 1, 255, 252], [255, 251, 1, 0, 255, 255, 249, 254, 0, 3, 255, 250, 255], [254, 253, 2, 1, 252, 254, 252, 255, 3, 0, 255, 254, 252], [255, 255, 0, 1, 255, 252, 255, 253, 0, 7, 253, 249, 255], [254, 251, 4, 0, 250, 254, 255, 254, 2, 0, 255, 255, 252], [255, 255, 2, 3, 254, 255, 254, 255, 4, 0, 255, 253, 255], [254, 255, 0, 0, 255, 253, 253, 255, 1, 0, 255, 254, 248], [255, 254, 255, 255, 253, 255, 255, 255, 253, 255, 253, 255, 255], [255, 253, 251, 252, 254, 254, 254, 255, 254, 255, 255, 254, 254]],'n':[[254, 255, 253, 252, 255, 255, 252, 255, 254, 255, 253, 255, 255], [255, 253, 255, 255, 252, 252, 255, 255, 255, 255, 255, 255, 254], [255, 254, 255, 255,
```python
import cv2
import numpy as np
class Convert(object):
"""docstring for Convert"""
def __init__(self):
super(Convert, self).__init__()
def _get_dynamic_binary_image(self,img):
'''
Adaptive threshold binarization
'''
img = cv2.imdecode(np.frombuffer(img, np.uint8), cv2.IMREAD_COLOR)
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
th1 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
return th1
def clear_border(self,img):
'''Remove border
'''
h, w = img.shape[:2]
for y in range(0, w):
for x in range(0, h):
# if y ==0 or y == w -1 or y == w - 2:
if y < 4 or y > w -4:
img[x, y] = 255
# if x == 0 or x == h - 1 or x == h - 2:
if x < 4 or x > h - 4:
img[x, y] = 255
return img
def interference_line(self,img):
'''
Interference line denoising
'''
h, w = img.shape[:2]
# !!!opencv matrix points are reversed
# img[1,2] 1: image height, 2: image width
for y in range(1, w - 1):
for x in range(1, h - 1):
count = 0
if img[x, y - 1] > 245:
count = count + 1
if img[x, y + 1] > 245:
count = count + 1
if img[x - 1, y] > 245:
count = count + 1
if img[x + 1, y] > 245:
count = count + 1
if count > 2:
img[x, y] = 255
return img
def interference_point(self, img, x=0, y=0):
"""Point noise reduction
9-neighborhood box, the number of black points in the cross box with the current point as the center
:param x:
:param y:
:return:
"""
# todo Determine the lower limit of the length and width of the image
cur_pixel = img[x, y] # The value of the current pixel point
height, width = img.shape[:2]
for y in range(0, width - 1):
for x in range(0, height - 1):
if y == 0: # First row
if x == 0: # Top left corner, 4-neighborhood
# 3 points next to the central point
total = int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if total <= 2 * 245:
img[x, y] = 0
elif x == height - 1: # Top right corner
total = int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1])
if total <= 2 * 245:
img[x, y] = 0
else: # Top non-corner, 6-neighborhood
total = int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if total <= 3 * 245:
img[x, y] = 0
elif y == width - 1: # Last row
if x == 0: # Bottom left corner
# 3 points next to the central point
total = int(cur_pixel) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x, y - 1])
if total <= 2 * 245:
img[x, y] = 0
elif x == height - 1: # Bottom right corner
total = int(cur_pixel) \
+ int(img[x, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y - 1])
if sum <= 2 * 245:
img[x, y] = 0
else: # Not the bottom and top vertices, 6-neighborhood
sum = int(cur_pixel) \
+ int(img[x - 1, y]) \
+ int(img[x + 1, y]) \
+ int(img[x, y - 1]) \
+ int(img[x - 1, y - 1]) \
+ int(img[x + 1, y - 1])
if sum <= 3 * 245:
img[x, y] = 0
else: # y is not at the edge
if x == 0: # Not the left vertex
sum = int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 3 * 245:
img[x, y] = 0
elif x == height - 1: # Not the right vertex
sum = int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x - 1, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1])
if sum <= 3 * 245:
img[x, y] = 0
else: # Meets 9-field conditions
sum = int(img[x - 1, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) \
+ int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 4 * 245:
img[x, y] = 0
return img
def run(self, img):
# Adaptive threshold binarization
img = self._get_dynamic_binary_image(img)
# Remove border
img = self.clear_border(img)
# Denoise interference lines in images
img = self.interference_line(img)
# Denoise interference points in images
img = self.interference_point(img)
return img
ImgMain.py
Recognition Code
#!/usr/bin/python
# -*- coding: utf-8 -*-
from fnmatch import fnmatch
from queue import Queue
import matplotlib.pyplot as plt
import cv2
import time
import os
from Convert import Convert
from CharMap import charMap
import requests
import numpy as np
def cutting_img(im, im_position, xoffset=1, yoffset=1):
# Number of recognized characters
im_number = len(im_position[1])
if im_number >= 4:
im_number = 4;
imgArr = []
# Cut characters
for i in range(im_number):
im_start_X = im_position[1][i][0] - xoffset
im_end_X = im_position[1][i][1] + xoffset
im_start_Y = im_position[2][i][0] - yoffset
im_end_Y = im_position[2][i][1] + yoffset
cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
imgArr.append(cropped)
# cv2.imwrite(str(i)+"v.jpg",cropped) # Check the cutting effect
return im_number,imgArr
def main():
cvt = Convert()
req = requests.get("http://xxxxxxxxxxxxxxxx/verifycode.servlet")
# Please note that some educational institutions have installed so-called cloud protection. Without a request header, the request will be intercepted, making it impossible to obtain the verification code image. You can print req.content to see the error message
img = cvt.run(req.content)
cv2.imwrite("v.jpg",img) # Check the verification code
# Position for cutting
im_position = ([8, 7, 6, 9], [[4, 12], [14, 21], [24, 30], [34, 43]], [[7, 16], [7, 16], [7, 16], [7, 16]])
cutting_img_num,imgArr = cutting_img(img,im_position,1,1)
# Identify the verification code
result=""
for i in range(cutting_img_num):
try:
template = imgArr[i]
tempResult=""
matchingDegree=0.0
for char in charMap:
img = np.asarray(charMap[char],dtype = np.uint8)
res = cv2.matchTemplate(img,template,3) #img original image, template template, matching the template to the original image
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
if(max_val>matchingDegree):
tempResult=char
matchingDegree=max_val
result += tempResult
matchingDegree=0.0
except Exception as err:
raise Exception
# print("ERROR "+ str(err))
pass
print(result)
if __name__ == '__main__':
main()
Complete code available at: https://github.com/WindrunnerMax/SWVerifyCode